Course Content
Module 1: Introduction to Cryptography
This module introduces cryptography, covering its history, importance in cybersecurity, and fundamental concepts such as encryption, decryption, and the differences between symmetric and asymmetric encryption.
0/6
Module 2: Cryptographic Concepts and Principles
This module explores essential cryptographic concepts, including the CIA triad (Confidentiality, Integrity, Availability), authentication, non-repudiation, key strength, and common attacks on cryptographic systems.
0/8
Module 5: Hashing Techniques
This module explores hashing techniques, explaining what hashing is, its properties, and common algorithms like MD5, SHA, and HMAC. It also covers the applications of hashing in data integrity and password protection.
0/9
Module 6: Cryptographic Key Management
This module focuses on the principles of cryptographic key management, including best practices for key generation, distribution, storage, expiration, rotation, and recovery to ensure secure cryptographic operations.
0/10
Module 7: Cryptographic Protocols and Standards
This module explores the various cryptographic protocols and standards used in cybersecurity, including SSL/TLS, IPsec, VPNs, PGP, PKI, and blockchain applications for secure communication and data protection.
0/8
Module 9: Cryptography Tools and Hands-On Practice
This module focuses on practical cryptographic tools, providing hands-on experience with tools like OpenSSL and GPG. Learners will practice encrypting and decrypting data, generating digital signatures, and verifying integrity.
0/10
Module 10: Common Pitfalls and Best Practices
This module highlights common pitfalls in cryptographic implementations, such as weak keys and misconfigurations, while emphasizing best practices for secure encryption, key management, and adherence to industry standards.
0/5
Module 11: Cryptography in Cybersecurity Frameworks
This module explores the role of cryptography in cybersecurity frameworks, focusing on standards like NIST and ISO/IEC, and how cryptographic practices support compliance with regulations such as GDPR and FIPS 140-2.
0/8
Module 12: Summary and Future Directions
This module reviews key concepts and techniques learned throughout the course, explores emerging trends in cryptography, discusses challenges in implementation, and provides insights into the future of cryptographic technologies.
0/5
Cryptography Fundamentals for Cybersecurity
About Lesson

Common Cryptographic Protocols

Several cryptographic protocols are widely used in securing digital communications. Each serves specific purposes and incorporates cryptographic primitives to meet its goals.

  • Transport Layer Security (TLS): TLS ensures secure communication over networks, particularly the internet. It is commonly used in web browsers to establish HTTPS connections. TLS provides:

    • Encryption for confidentiality.
    • Message authentication codes (MACs) for data integrity.
    • Certificates for server and optional client authentication.
  • Secure Shell (SSH): SSH enables secure remote login and data transfer over an unsecured network. It uses public-key cryptography for authentication and symmetric encryption for data confidentiality during the session.

  • IPsec (Internet Protocol Security): IPsec secures internet communications at the IP layer by encrypting and authenticating each packet in a data stream. It is often used in Virtual Private Networks (VPNs) to establish secure connections between devices.

  • Pretty Good Privacy (PGP): PGP provides encryption and signing of emails and files, ensuring confidentiality and authenticity. It uses a combination of public-key and symmetric cryptography.

  • Kerberos: A network authentication protocol designed to provide secure identity verification for users and services within an untrusted network. It relies on secret-key cryptography and a trusted third party (Key Distribution Center).

  • SSL/TLS-based VPNs: Virtual Private Networks using SSL/TLS protocols secure data exchanges between devices, often in remote work environments.